詳細介紹
微動力生活污水處理設備裝置
微動力生活污水處理設備裝置——技術創(chuàng)新性
目前,含酚廢水處理工藝主要為以生物法為核心的組合工藝,即預處理工藝(如氨氮吹脫、蒸氨脫酚等)-生物法-后續(xù)深度處理工藝(如高級氧化法、化學沉淀法等)。這種組合工藝雖然能終使廢水達標排放,單仍存在以下問題:
工藝流程復雜,必須有嚴格的預處理工段及高效的深度處理;酚、氨濃度要求較高,進生化工段酚濃度需低于300mg/L,氨濃度低于30mg/L;處理不*,生化段COD降解率僅為80%左右;產(chǎn)生二次污染:每處理你好00噸廢水約有3~4噸污泥產(chǎn)生,污泥中含有PAHs、重金屬等有害物質危廢污泥產(chǎn)生,屬于危險廢棄物,對其的進一步處理是含酚廢水常規(guī)方法處理所帶來的一個難點。
以處理500t/d煤氣化含酚廢水為例:SCWO系統(tǒng)工藝中SCWO的實際處理量為你好t/d,與“蒸氨脫酚—生化—混凝”傳統(tǒng)工藝相比,工藝投資分別為2500、1500萬元;SCWG-SCWO工藝每處理1噸廢水費用為20元/t,“蒸氨脫酚—生化—混凝”處理費用為40元/t。“SCWG-SCWO”與“蒸氨脫酚—生化—混凝”工藝相比,年節(jié)約365萬元,3年即可收回所多出的投資費用
廢水處理工藝
(1)厭氧-好氧串聯(lián)工藝
厭氧部分一般采用UASB、厭氧濾池、厭氧塘、縱向折流套筒式厭氧污泥床(VBASB)處理工藝,好氧部分可采用生物接觸氧化、循環(huán)式活性污泥法等工藝,厭氧前面采用調節(jié)池預曝氣、沉淀等預處理,好氧后面一般接氣浮、吸附、過濾等后處理,以保證出水達標。
(2)兩段好氧串聯(lián)工藝
該工藝可為生物接觸氧化與氧化塘串聯(lián),如江西國藥廠淀粉分廠就是采用這種工藝。也可采用酵母菌-焦炭固定床生物膜兩段好氣處理工藝。
(3)化學絮凝-活性炭吸附
國內外常用的淀粉廢水處理方法是生化法,該方法具有技術成熟,效果較好,運行可靠等特點。其缺點是占地面積大,基建投資高,技術難度大,搡作管理復雜等。國內一些中小型淀粉廠由于技術和經(jīng)濟條件有限,尤其是北方地區(qū),冬季氣溫低,采用生化法處理淀粉廢水更加困難。用化學絮凝、活性炭吸附的流程處理淀粉廢水,具有基建投資少,工藝簡單,搡作容易,能耗低,對氣溫的變化適應性強,特別適用于該類中小型淀粉廠。
處理流程為:廢水→反應池(加入混凝劑,可利用工業(yè)廢渣DSZ),調節(jié)pH值為9~11)→管道反應器(加入絮凝劑,可用PAM)→斜板沉淀池→上清水(用工業(yè)廢酸調節(jié)pH值為6~9)→砂濾池→炭塔→出水排放。
曝氣生物濾池結構
曝氣生物濾池的構造與污水三級處理的濾池基本相同,只是濾料不同,一般采用單一均粒濾料。曝氣生物濾池主要由濾池池體、濾料、承托層、布水系統(tǒng)、布氣系統(tǒng)、反沖洗系統(tǒng)、出水系統(tǒng)、管道和自控系統(tǒng)等八個部分組成。
1.濾池池體
其作用是容納被處理水量和圍擋濾料,并承托濾料和曝氣裝置的重量,形狀有圓形、正方形和矩形三種,結構形式有鋼制設備和鋼筋混凝土結構等。
2.生物填料層
填料層是生物膜的載體,并兼有截留懸浮物質的作用。目前曝氣生物濾池所采用的濾料形狀有蜂窩管狀、束狀、圓形輻射狀、盾狀、網(wǎng)狀、筒狀等,所采用的濾料主要有多孔陶粒、無煙煤、石英砂、膨脹頁巖、輕質塑料、膨脹硅鋁酸鹽、塑料模塊及玻璃鋼等。
不同的顆粒填料的物理化學特性有一定的區(qū)別,有的甚至相關很大。生物載體填料的選擇是曝氣生物濾池技術成功與否的關鍵,它決定了曝氣生物濾池濾料能否運行,填料的選擇應綜合以下各種因素:
a.機械強度好;
b.一般選用比表面積大、開孔孔隙率高的多孔惰性載體,有利于微生物的吸附、持續(xù)生長和形成生物膜;
c.選擇規(guī)則的球狀填料,使布氣、布水均勻,水流阻力小;
d.表面應具有一定的孔隙率和粗糙度,有利于微生物膜的附著、生長,有利于生物濾池的運行;
e.密度應在一定范圍內;
f.應具有表面電性和親水性,并具有良好的抗反沖洗能力;
工藝簡述
廢水經(jīng)調節(jié)池調節(jié)、均衡污水水質、水量,用提升泵送入隔油池,除去水中輕油、重油。隔油池出水自流進入氣浮裝置,除去水中殘留礦物質油,收集的輕、重油分別送入輕、重油池收集后,定期抽送至廠內焦油回收設備回收或摻入鍋爐房煤中焚燒。
氣浮池出水自流進入?yún)捬醭?,水中苯?等苯環(huán)系類難于好氧生物降解的有機物質,在微生物的分解作用下,破環(huán)分解成直鏈有機物、CO2和水,硫化物等在微生物的作用下,有效分解去除。污水經(jīng)過好氧池中硝化細菌的硝化作用,將水中的氨氮分解轉化成NO3-和NO2-。
好氧池出水部分回流至厭氧池,利用厭氧池進水COD、BOD,在厭氧池內反硝化菌的作用下,進行反硝化脫氮反應,使水中的NO3-和NO2-轉化成氮氣。好氧池出水與集水池收集的生活污水混合進入缺氧池,在缺氧池中微生物的反硝化作用下,將水中的NO3-和NO2-分解成氮氣釋放,生活污水中的BOD做為缺氧池反硝化反應的碳源補充,使水中的氨氮達到排放要求。
污水中殘留有機物質在二級好氧池中的好氧微生物作用下,分解成CO2和H2O,有效去除水中COD、BOD,使出水各項指標達到環(huán)保要求。A2O2工藝對氨氮具有很高的去除效率,是國內外普遍采用的*的生物脫氮技術。
由于污水中所含的有機物往往是多種組分的極其復雜的混合體,因而難以一一分別測定各種組分的定量數(shù)值。實際上常用一些綜合指標,間接表征水中有機物含量的多少。表示水中有機物含量的綜合指標有兩類,一類是以與水中有機物量相當?shù)男柩趿?O2)表示的指標,如生化需氧量BOD、化學需氧量COD和總需氧量TOD等;另一類是以碳(C)表示的指標,如總有機碳TOC。對于同一種污水來講,這幾種指標的數(shù)值一般是不同的,按數(shù)值大小的排列順序為TOD>CODCr>BOD5>TOC
過高的生化需氧量
生化需氧量全稱為生物化學需氧量,英文是Biochemical Oxygen Demand,簡寫為BOD,它表示在溫度為20℃和有氧的條件下,由于好氧微生物分解水中有機物的生物化學氧化過程中消耗的溶解氧量,也就是水中可生物降解有機物穩(wěn)定化所需要的氧量,單位為mg/L。BOD不僅包括水中好氧微生物的增長繁殖或呼吸作用所消耗的氧量,還包括了硫化物、亞鐵等還原性無機物所耗用的氧量,但這一部分的所占比例通常很小。因此,BOD值越大,說明水中的有機物含量越多。
當可溶性有機物被細菌消耗時,被轉化為二氧化碳和生物絮凝物,然后從流出物中沉降。降低流出物的有機物含量和改善BOD水平,所提到的過程是一種控制BOD的流行方法,通過促進“食物”和有機物質的正確平衡來實現(xiàn)。這可以通過適當?shù)钠貧夥椒▉韺崿F(xiàn),其中空氣被引入流出物中以增加這種生物氧化的速率,這反過來又增加了可沉降固體的水平,然后可以通過以下方法從流出物中除去。過濾或澄清。
過多的總懸浮和溶解固體
根據(jù)廢水中的TSS和TDS水平以及排放標準級別的不同,實施方法將有所不同。常用的減少TSS的處理方法:凝結、絮凝、沉降、砂或碳過濾。
TDS的減少是一項更復雜的工藝。如果污染物是金屬基的,比如鈣,鎂或鐵,則可以添加澄清過程中的簡單化學添加劑以減少這些污染物。如果是鈉,氯