激情综合啪啪6月丁香,久久久久国产精品91福利,99精品日韩欧美在线观看,91成人午夜福利在线观看国产

世聯(lián)博研(北京)科技有限公司

主營產(chǎn)品: 儀器儀表

3

聯(lián)系電話

13466675923

您現(xiàn)在的位置: 世聯(lián)博研(北京)科技有限公司>> 加拿大biomomentum動態(tài)機械特性測試分析

公司信息

聯(lián)人:
話:
86-010-67529703
機:
13466675923
真:
址:
北京市海淀區(qū)西三旗上奧世紀(jì)中心A座9層906
編:
網(wǎng)址:
鋪:
http://www.hg1112.cn/st628212/
給他留言
加拿大biomomentum動態(tài)機械特性測試分析
加拿大biomomentum動態(tài)機械特性測試分析
參考價 面議
具體成交價以合同協(xié)議為準(zhǔn)
  • 型號
  • 品牌
  • 廠商性質(zhì) 經(jīng)銷商
  • 所在地

更新時間:2023-07-27 18:34:11瀏覽次數(shù):144

聯(lián)系我們時請說明是環(huán)保在線上看到的信息,謝謝!

【簡單介紹】
多功能多尺度動態(tài)力學(xué)分析系統(tǒng)
多功能多尺度動態(tài)力學(xué)分析系統(tǒng),DYNAMIC MECHANICAL ANALYSIS system

biomomentum 動態(tài)力學(xué)測試分析系統(tǒng)-DYNAMIC MECHANICAL ANALYSIS
-多載荷多物理場耦合微觀力學(xué)性能原位測試系統(tǒng)


Biomomentum 品牌的mach-1 型號的多功能微觀生物力學(xué)測試分析系統(tǒng)模塊化集成壓縮、張力、剪切、摩擦、扭轉(zhuǎn)和2D/3D壓痕、3D輪廓及多力混合耦連測試的一體化微觀力學(xué)測試裝置。能對生物組織、聚合物、凝膠、生物材料、膠囊、粘合劑和食品進行精密可靠的機械刺激和表征。允許表征的機械性能包括剛度、強度、模量、粘彈性、塑性、硬度、附著力、腫脹和松弛位移控制運動,


該系統(tǒng)可以做具有動態(tài)機械特性測試分析功能,可以通過高分辨率的軸向(拉伸/壓縮)或剪切(平面或扭轉(zhuǎn))組織材料的動態(tài)力學(xué)特性測試分析。 這些特性通常用具有存儲和損耗模量分量的復(fù)數(shù)動態(tài)模量表示。 儲能模量可以與材料的剛度相關(guān)聯(lián),而損耗模量與通過塑性變形,內(nèi)部摩擦,相對分子運動,弛豫過程,相變,形態(tài)變化等導(dǎo)致的樣品內(nèi)能量的損失相關(guān)。 動態(tài)特性提供了分子水平的信息,以了解材料的機械性能。 動態(tài)機械性能的評估對于表征非彈性性能(例如,粘彈性或多孔彈性)的材料的表征te別有用,這些材料的性能會隨頻率而變化。

該系統(tǒng)是能集成壓縮、張力、剪切、摩擦、扭轉(zhuǎn)和2D/3D壓痕、3D輪廓及多力混合耦連測試的一體化微觀力學(xué)測試裝置。能對生物組織、聚合物、凝膠、生物材料、膠囊、粘合劑和食品進行精密可靠的機械刺激和表征。允許表征的機械性能包括剛度、強度、模量、粘彈性、塑性、硬度、附著力、腫脹和松弛位移控制運動。

特點

1、適用樣品范圍廣:

1.1、從骨等硬組織材料到腦組織、眼角膜等軟組織材料

1.2、從粗椎間盤的樣品到j(luò)細(xì)纖維絲

2、通高量壓痕測試分析

2.1、三維法向壓痕映射非平面樣品整個表面的力學(xué)特性

2.2、48孔板中壓痕測試分析

3、力學(xué)類型測試分析功能齊

模塊化集成壓縮、張力、剪切、摩擦、扭轉(zhuǎn)、穿刺、摩擦和2D/3D壓痕、3D表面輪廓、3D厚度等各種力學(xué)類型支持,微觀結(jié)構(gòu)表征及動態(tài)力學(xué)分析研究

4、高分辨率:

4.1、位移分辨率達0.1um

4.2、力分辨率 達0.025mN

5、 行程范圍廣:50-250mm

6、體積小巧、可放入培養(yǎng)箱內(nèi)

7 、高變分辨率成像跟蹤分析

8、多軸向、多力偶聯(lián)刺激

9、活性組織電位分布測試分析

10、產(chǎn)品成熟,文獻量達 上千篇

 

動態(tài)機械力學(xué)分析應(yīng)用視頻:


Dynamic mechanical Analysis

Testing Procedure Rubber

Testing Procedure Hydrogel

Analysis Procedure

典型文獻:


Injectable and degradable Poly(oligoethylene glycol methacrylate)-based hydrogels-synthetic versatility for improved biomaterial designBakaic E, Smeets N, Imbrogno S and Hoare TOral #327.3 on Friday, May 20 from 14:00 to 15:00 in room 524 during World Biomaterials Congress, Montreal, May 2016.
Introduction: Poly(ethylene glycol) (PEG)-based hydrogels are attractive biomaterials due to their hydrophilic, non-cytotoxic and non-immunogenic properties[1]. We recently reported on in situ-gelling PEG-analogue hydrogels based on poly(oligoethylene glycol methacrylate) (POEGMA) formed via rapid gelation of hydrazide and aldehyde-functionalized POEGMA oligomers upon mixing that overcome many...Read More
Biomechanical models for radial distance determination by the rat vibrissal systemBirdwell JA, Solomon JH, Thajchayapong M, Taylor MA, Cheely M, Towal RB, Conradt J and Hartmann MJJournal of neurophysiology, 98(4), 2439-2455. (2007)
Rats use active, rhythmic movements of their whiskers to acquire tactile information about three-dimensional object features. There are no receptors along the length of the whisker; therefore all tactile information must be mechanically transduced back to receptors at the whisker base. This raises the question: how might the rat determine the radial contact position of an object along the whisker?...Read More
Highly oriented in situ gelling nanocomposite hydrogels as tissue engineering scaffolds for promoting directional cell growthDe France K, Yager KG, Chan KJ, Hoare TR and Cranston EDPoster #P.0554 on Thursday, May 19 from 15:00 to 16:30 in room 220BCD (P3) during World Biomaterials Congress, Montreal, May 2016
Introduction: Patterned hydrogels and polymer scaffolds have attracted attention as platforms for directed cell growth due to the significant impacts cell alignment has on tissue regeneration, mechanical properties and various other cell behaviours[1],[2]. However, most currently reported platforms require lengthy micropatterning steps[3]-[10], limiting their clinical applicability in vitro....Read More
Fully injectable hydrazone-thiosuccinimide and hydrazone-disulfide interpenetrating polymer network hydrogels by kinetically orthogonal cross-linking of functionalized PNIPAM and PVP precurGilbert T and Hoare TPoster #P.0058 on Thursday, May 19 from 15:00 to 16:30 in room 220BCD (P1) during World Biomaterials Congress, Montreal, May 2016.
Introduction: IPNs are produced by interlocking two chemically distinct networks in each other’s free volume fraction. This interlocking and the potential for segregation of the IPNs into inhomogeneous domains can cause mechanical properties and microstructures distinct from single network controls. Prior IPNs reported as injectable (desired for minimally invasive delivery) were polymerized...Read More
Engineering degradable ''smart'' biomedical hydrogels on multiple length scalesHoare TOral #339.2 on Friday, May 20 from 16:30 to 18:30 in room 520B during World Biomaterials Congress, Montreal, May 2016
While multiple types of smart, environmentally-responsive materials have been explored for a variety of biomedical applications (e.g. drug delivery, tissue engineering, bioimaging, etc.), their ultimate clinical use has been hampered by their lack of biologically-relevant degradation as well as challenges regarding their non-surgical administration to the body. These factors have particularly limited...Read More
The Aortic Wrap Procedure - A Surgical Method of Treating Age-Related Aortic Dilatation and StiffnessIliopoulos JPhD Thesis, University of New South Wales, Sydney. (2006)
Introduction: There is progressive stiffening and dilatation of the aorta and large elastic arteries with aging as a result of the repetitive cyclic stress they are exposed to throughout life. Aortic stiffening has a number of detrimental effects including an increase in aortic pulse wave velocity and early wave reflection, isolated systolic hypertension, ventricular-vascular mismatch, impaired...Read More
Characterization of the effect of microfracture surgery and angle of incidence on the structural properties of femoral boneLiang LD, Wagner A, Steeds J, Hurtig M and Gordon KStudies by Undergraduate Researchers at Guelph, 7(1), 56-61. (2013)
Microfracture surgery is one of the most common treatment options for knee osteoarthritis, a chronic inflammatory disease of the knee joint. However, a recent study by Theodoropoulos et al. (2012) has shown that there are significant variations in the angle of surgical awl used by surgeons in microfracture surgery as well as in the rehabiliation regimen prescribed following surgery. The purpose of...Read More
The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesionMatuska AM and McFetridge PSJ Biomed Mater Res Part B, 2014, pp 1-10
Terminal sterilization induces physical and chemical changes in the extracellular matrix (ECM) of ex vivo-derived biomaterials due to their aggressive mechanism of action. Prior studies have focused on how sterilization affects the mechanical integrity of tissue-based biomaterials but have rarely characterized effects on early cellular interaction, which is indicative of the biological response. Using...Read More
Static and Dynamic Compression Application and Removal on the Intervertebral Discs of Growing RatsMenard AL, Grimard G, Massol E, Londono I, Moldovan F and Villemure IJournal of Orthopaedic Research Month 2015, pp.1-9. (2015)
Fusionless implants are used to correct pediatric progressive spinal deformities, most of them spanning the intervertebral disc. This study aimed at investigating the effects of in vivo static versus dynamic compression application and removal on discs of growing rats. A microloading device applied compression. 48 immature rats (28 d.o.) were divided into two groups (43d, 53d). Each group included...Read More
Tissue engineered nucleus pulposus tissue formed on a porous calcium polyphosphate substrateSeguin CA, Grynpas MD, Pilliar RM, Waldman SD and Kandel RASpine, 29(12), 1299-1306. (2004)
STUDY DESIGN: This study describes the formation of nucleus pulposus tissue using a novel tissue engineering approach. OBJECTIVES: To determine if a construct composed of nucleus pulposus tissue on the surface of a calcium polyphosphate substrate could be formed in vitro with properties similar to native nucleus pulposus tissue. 

SUMMARY OF BACKGROUND DATA: There...Read More
ASTM F1717 - Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy ModelASTM International, West Conshohocken, PA, 2015,
Significance and Use

5.1 Spinal implants are generally composed of several components which, when connected together, form a spinal implant assembly. Spinal implant assemblies are designed to provide some stability to the spine while arthrodesis takes place. These test methods outline standard materials and methods for the evaluation of different spinal implant assemblies so...Read More
Mach-1 - Dynamic Mechanical Testing (MA056-SOP04-D v1)Hadjab I and Quenneville EBiomomentum Inc. Laval (QC), Canada, Effective Date: December 3rd, 2014
Purpose 
This document describes a standard method to assess the frequency behavior of the dynamic mechanical properties of material through the complex Young’s (E*) or shear (G*) modulus using the Mach-1 mechanical tester. Analysis of the measurement results is part of a companion document (SW186-SOP04-D). 

Scope 
This method can be applied...Read More
Mach-1 Analysis - Extraction of the Complex Modulus Components Following Dynamic Mechanical Testing (SW186-SOP04-D v1)Hadjab I and Quenneville EBiomomentum Inc. Laval (QC), Canada, Effective Date: December 3rd, 2014
Purpose 
This procedure describes a method for the extraction of the complex modulus components (Young’s (E’ and E") and shear (G’ and G") modulus) following dynamic mechanical testing performed as per MA056-SOP04-D. 

Scope 
This procedure can be used with any Mach-1 result file resulting from dynamic mechanical testing on a sample...Read More
Review Paper: Fifty years of brain tissue mechanical testing: From in vitro to in vivo investigationsChatelin S, Constantinesco A and Willinger RBiorheology 47 (2010) 255–276. DOI 10.3233/BIR-2010-0576
Beginning in the 1960s many studies have been performed to investigate the mechanical properties of brain. In this paper we point out the difficulties linked with in vitro experimental protocols as well as the advantages of using recently developed non-invasive in vivo techniques, such as magnetic resonance elastography. Results of in vitro and in vivo work are compared, emphasizing the specificities...Read More
Autonomously Self-Adhesive Hydrogels as Building Blocks for Additive ManufacturingDeng X, Attalla R, Sadowski LP, Chen M, Majcher MJ, Urosev I, Yin D-C, Selvaganapathy PR, Filipe CDM and Hoare TBiomacromolecules 2017, Published Online, doi: 10.1021/acs.biomac.7b01243
We report a simple method of preparing autonomous and rapid self-adhesive hydrogels and their use as building blocks for additive manufacturing of functional tissue scaffolds. Dynamic crosslinking between 2-aminophenylboronic acid-functionalized hyaluronic acid and poly(vinyl alcohol) yields hydrogels that recover their mechanical integrity within one minute after cutting or shear under both neutral...Read More
In Situ Cross-Linking of Poly (vinyl alcohol)/Graphene Oxide–Polyethylene Glycol Nanocomposite Hydrogels as Artificial Cartilage Replacement: Intercalation Structure, Unconfined Compressive Behavior, and Biotribological BehaviorsMeng, Yeqiao; Ye, Lin; Coates, Phil; Twigg, PeterJ. Phys. Chem. C, 2018, 122 (5), pp 3157–3167 DOI: 10.1021/acs.jpcc.7b12465
Poly(vinyl alcohol) (PVA)/graphene oxide (GO) nanocomposite hydrogel as artificial cartilage replacement was prepared via freezing/thawing method by introducing polyethylene glycol (PEG). Efficient grafting of PVA molecules onto GO surface was realized by formation of hydrogen bonding, resulting in exfoliation and uniform distribution of GO in PVA matrix. By introduction of appropriate content of GO,...Read More
Growth and Characterization of Multicellular Spheroids in Cellulose Derived Hydrogels as an Artificial Three-Dimensional ScaffoldMelissa CampbellUniversity of Toronto
The Young’s modulus of each hydrogel was performed on a Mach-1 Mechanical tester (Biomomentum Inc., QC) using cyclic compression and parallel plate geometry. The hydrogels for testing were pre-formed into disks measuring 3.25 mm in height by 14 mm in diameter. Compression was executed by applying 20% strain at a rate of 0.03 mm/s in the +z direction. The Young’s modulus of the hydrogels was...Read More
Experimental and finite element analyses of bone strains in the growing rat tibia induced by in vivo axial compressionTanvir Mustafy, Irène Londono, Isabelle VillemureJournal of the Mechanical Behavior of Biomedical Materials
The objective of this study was to develop and validate a voxel based F






典型測試材料:

我公司專注生物力學(xué)和生物打印等生物醫(yī)學(xué)工程科研服務(wù)-10年經(jīng)驗支持,
點擊查更多科研工具-應(yīng)用盡有

該公司的其它相關(guān)產(chǎn)品查看所有產(chǎn)品 >>


產(chǎn)品對比 二維碼

掃一掃訪問手機商鋪

對比框

在線留言
逊克县| 新邵县| 廉江市| 徐闻县| 易门县| 米林县| 高阳县| 孟津县| 南漳县| 行唐县| 富阳市| 镇江市| 铜梁县| 上犹县| 崇明县| 崇阳县| 清苑县| 比如县| 连平县| 金堂县| 伊宁市| 靖西县| 永善县| 买车| 武城县| 宣汉县| 罗平县| 始兴县| 西华县| 广宗县| 乌鲁木齐县| 泗水县| 衡东县| 麻栗坡县| 城固县| 股票| 平顺县| 淮滨县| 罗定市| 抚顺县| 黄大仙区|