章瑞
目錄:山東章瑞機械有限公司>>氧化風機>>脫硫氧化風機>> 濕法煙氣脫硫氧化風機
章瑞
尺寸 | 100*80*120cm | 電流 | 3A |
---|---|---|---|
風量 | 1.5m3/h | 加工定制 | 是 |
適用范圍 | 脫硫氧化曝氣 | 輸入功率 | 1.5w |
溫控范圍 | 50 | 重量 | 58kg |
采用石灰石-石膏法脫硫工藝,通過對氧量的理論核算、濕法煙氣脫硫氧化風機停運后吸收塔液位的影響分析、漿液品質(zhì)分析與石膏品質(zhì)分析,得出氧化風機停運的可行性探討。試驗表明,在停運過程中,凈煙氣SO2濃度、漿液中CaSO3濃度在正常范圍內(nèi),石膏成分及脫水正常。本文通過優(yōu)化氧化風機的運行方式,可實現(xiàn)降低廠用電率0.07%。
1 濕法煙氣脫硫氧化風機停運可行性分析
深能合和電力(河源)有限公司(以下簡稱“河源電廠”)的2×600MW 超超臨界燃煤機組采用石灰石-石膏法脫硫工藝,每臺機組設置1座脫硫吸收塔,每座吸收塔設置兩臺羅茨風機。
1.1 空氣量對吸收塔的影響
氧化風量過大會導致系統(tǒng)能耗增加;過多的氣泡會導致吸收塔產(chǎn)生虛假液位。氧化風量過小會導致脫硫系統(tǒng)設備的結垢和堵塞;抑制SO2的吸收,降低脫硫效率;影響脫硫石膏的品質(zhì)。因此,脫硫吸收塔需要的氧量需要相對精準控制。在保證脫硫效率的前提下,提供合理的氧化風,一方面可降低脫硫系統(tǒng)的運行費用,另一方面可保證脫硫系統(tǒng)的穩(wěn)定運行。
1.2 氧化需求氧量、實際氧量計算
根據(jù)脫硫系統(tǒng)反應方程式,SO32-轉化為SO42-,氧化需求氧氣量QO2計算公式為QO2=SO2去除量×0.5)/ρ;實際參與反應氧量QO2r計算公式為QO2r=(O2-α×SO2×0.5)×β。計算保留裕度,取自然氧化率20%、氧化空氣利用率20%,以燃燒高硫煤種工況為主,考慮修正因素,采集各負荷下對應的煙氣數(shù)據(jù),計算得出相應QO2、QO2r如表1。
表1 相關理論計算值
式中QO2為氧化需求氧氣量,Nm3/h;ρ 為氧氣的密度,ρ=1.43kg/Nm3;0.5為氧化反應化學當量摩爾比;QO2r為實際參與反應的氧量,Nm3/h;SO2為二氧化硫脫除量,Nm3/h;O2為原煙氣氧量,Nm3/h;α 為自然氧化率,20%;β 為空氣利用率,20%。
從表1中可以明顯看出:各負荷下煙氣中提供的氧氣量遠大于氧化所需的氧氣量,從反應需求氧量來看,氧化風機是具備停運條件的。
此外,由于煙氣僅會與噴淋出的漿液逆向接觸而發(fā)生氧化反應,通過漿液池表面吸收的氧量是很小的,此時煙氣中的氧量能否將噴淋區(qū)漿液中亞硫酸鹽氧化為硫酸鹽是停運氧化風機的關鍵。對此,做出如下分析:經(jīng)典雙膜理論認為,對于氧化反應的進行,其控制步驟是O2的吸收,而O2透過液膜的能力與接觸表面積有關,接觸表面積越大,O2的吸收能力越強,提高接觸表面積的方法是提高液—氣比,由于漿液循環(huán)泵參數(shù)確定,液—氣比已確定,為了能夠提高漿液自然氧化的效率,可以通過增加漿液循環(huán)停留時間τc 來實現(xiàn)。
τc(min)是漿液在吸收塔內(nèi)循環(huán)一次在吸收塔中的平均停留時間,等于吸收塔漿液體積與循環(huán)漿液總流量之比。石灰石工藝的τc 一般為3.5~7min[2]。Tc=漿液體積(m3)/循環(huán)漿液總流量(m3/h)×60。
吸收塔直徑15.3m;面積183.76062m2;循環(huán)量:ABC 漿液循環(huán)泵9800m3/h,D 漿液循環(huán)泵7100m3/h。當漿液循環(huán)泵ABCD、BCD 泵運行時,控制吸收塔液位分別在11.5m、11.3m,此時τc 分別為3.48min、4.67min,在保證石灰石溶解及石膏生長的同時實現(xiàn)了較多漿液循環(huán)次數(shù),在噴淋效果穩(wěn)定且富氧的情況下,自然氧化將在噴淋區(qū)持續(xù)發(fā)生。
1.3 氧化風機停運后漿液品質(zhì)與石膏品質(zhì)的變化
為了探究氧化風機停運對吸收塔漿液品質(zhì)、石膏品質(zhì)的影響,通過對氧化風機停運后的吸收塔漿液進行6小時內(nèi)的逐小時化驗,得出結果如表2,并分別于4月12日、16日、21日、22日進行時長0.5h、3.0h、5.0h、5.0h 的停運試驗,在試驗后對吸收塔漿液、石膏中石灰石含量、亞硫酸鈣等參數(shù)進行化驗,結果如表2~4所示。
表2 吸收塔漿液分時品質(zhì)
結合表2~4相關化驗數(shù)據(jù)可以看出,氧化風機停運后對吸收塔漿液品質(zhì)、石膏品質(zhì)基本無影響,各項指標均在正常范圍內(nèi)波動,尤其亞硫酸鹽含量,始終保持在較低含量,證明了氧化風機停運的可行性。
表3 氧化風機停運后吸收塔漿液品質(zhì)參數(shù)
表4 氧化風機停運后吸收塔石膏品質(zhì)參數(shù)
1.4 氧化風機停運后吸收塔液位變化
吸收塔密度計算為:ρ=Δ P/g Δ H,液位計算公式為:H=P/ρg+h,式中Δ P 為差壓,Pa;Δ H為差壓變送器2個膜片的高度差,Δ H=8.8m;ρ 為漿液密度計算值,kg/m3;g 為重力加速度,9.8m/s;P 為吸收塔底部/頂部平均壓力,Pa;h 為底部/頂部壓力變送器的安裝高度,h=0.97m/9.70m。
河源電廠脫硫吸收塔存在起泡現(xiàn)象,為防止氧化風機停運后產(chǎn)生溢流等事故,需探究氧化風機停運對液位的影響,實施了多次風機停運試驗,在試驗前將吸收塔液位降低至10.5m 左右,結果如表5。
表5 氧化風機停運統(tǒng)計表
編號1、2、3是未投加增效劑時氧化風機停運后的吸收塔液位變化情況,編號4、5是投加增效劑后吸收塔液位變化情況??梢钥闯鲆何怀霈F(xiàn)上漲、下降兩種情況。吸收塔參數(shù)見表6。
1.4.1 以3號試驗吸收塔液位升高進行分析
由表6可以看出,氧化風機跳閘后吸收塔液位上漲約1.46m 是由于吸收塔頂部壓力P 頂部上漲了約11.60kPa 所致。具體分析如下:
表6 吸收塔參數(shù)表
吸收塔漿液有一定粘度,在噴淋過程中夾雜煙氣在漿液表面形成氣泡,隨著氧化風機所輸入的空氣不斷逸出到漿液表面,氣泡的內(nèi)部壓力不斷增大,當壓力超過其表面張力時,氣泡破裂,漿液回落至漿液池中。當氧化風機停運后,氣泡無法自行完成長大破裂,這種情況形成大量小氣泡,提高了起泡層高度。此時由于起泡層的含水率不斷增加,導致了吸收塔頂部壓力升高,而底部壓力基本保持不變。
1.4.2 以1號試驗吸收塔液位降低進行分析
由表6可以看出,氧化風機跳閘后吸收塔液位降低約0.24m 是由于吸收塔頂部壓力P 頂部降低了約2.5kPa 所致。具體分析如下:
結合2號試驗可以看出,吸收塔液位在BC 漿液循環(huán)泵運行時停運氧化風機會造成吸收塔液位降低,可能原因為停運D 漿液循環(huán)泵后,由于循環(huán)量變少、漿液擾動減少導致基本不產(chǎn)生氣泡。此外可能由于D 漿液循環(huán)泵噴淋層位于吸收塔頂層位置,噴淋落下的小液滴不斷融合成大液滴,具有的能量較多、對漿液擾動較大、起泡層增高,而在BC 漿液循環(huán)泵運行時避免了該現(xiàn)象。
頂部壓力測點在停運氧化風機后壓力降低,其原因為在漿液自身起泡現(xiàn)象較輕的情況下,氧化風機向吸收塔內(nèi)鼓氣會使?jié){液表面形成新的氣泡,使得起泡層增厚。而停運氧化風機后,起泡層由于沒有新的空氣鼓入而逐漸降直至穩(wěn)定,使得頂部測點壓力變小。
1.4.3 以5號試驗投加增效劑后吸收塔液位升高進行分析
表6中5號試驗是處理缺陷而停運氧化風機的前后吸收塔參數(shù)變化數(shù)據(jù)??梢钥闯?,氧化風機停運、增啟D 泵并噴淋95t 后塔位分別升高了0.46m、0.78m,原因是吸收塔頂部壓力分別升高了4.07kPa、6.17kPa,底部液位在啟泵后升高5.58kPa 所致,原因分析如下:
此時漿液中氯根濃度為16187mg/L,漿液品質(zhì)相對較差,在A、B、C 三臺漿液循環(huán)泵運行時,停運氧化風機后吸收塔液位上升了0.46m,符合以往的判斷,漿液在氧化風斷供后發(fā)生了起泡現(xiàn)象。但是相對于以往停運氧化風機的塔位變化(4號試驗氯根8000mg/L、5號試驗氯根10000mg/L),可以看出雖然漿液品質(zhì)相對較差,但是液位反而漲幅下降,加入的增效劑可以有效抑制漿液起泡。增啟D 漿液循環(huán)泵后液位出現(xiàn)了明顯上升,增量至1.24m,其原因一方面是啟泵后,對吸收塔漿液池表層產(chǎn)生擾動,起泡層增厚,另一方面由于向塔內(nèi)補充了95t水,約使塔位上升0.5m。
本次停運氧化風機機組負荷為600MW,為預防吸收塔起泡而產(chǎn)生液位升高而溢流的現(xiàn)象,提前進行了倒?jié){操作,為漿液起泡留下充足的裕度。在經(jīng)過停運氧化風機、增啟漿液循環(huán)泵、增啟除霧水泵等可以使吸收塔液位升高的操作后,可見吸收塔液位仍在可控范圍內(nèi),對運行無影響。
此外,本次停運氧化風機可以看出增效劑的加入有效抑制了吸收塔漿液的起泡情況,更有利于創(chuàng)造停運條件,同時保證了吸收塔凈煙氣在要求范圍內(nèi),未發(fā)生高負荷凈煙氣硫份超標現(xiàn)象。因此,從運行經(jīng)濟性的角度考量看,可以定期向塔內(nèi)投加少量增效劑,在保持對吸收塔漿液起泡抑制效果的同時,做到改善吸收塔運行工況,節(jié)約石灰石采購量,減少濕磨機運行時間節(jié)約電量等降本情況,并且實現(xiàn)氧化風機的長期停運。
綜上,按全年全負荷停運氧化風機,停運兩臺氧化風機可節(jié)約電量3512.6MWh,每年兩臺機組停運氧化風機保守計算可增收約162.6萬元(不包括減少的設備損耗費用),存在巨大節(jié)能潛力。目前通過燃燒高硫煤投加催化劑的經(jīng)驗,可以在停運氧化風機過程中持續(xù)添加催化劑,保持吸收塔內(nèi)的催化劑在一定濃度范圍內(nèi)。投加適量催化劑在提高脫硫率的情況下,還可達到以下效果:抑制吸收塔起泡,在停運氧化風機降低液位時可適當提高液位;穩(wěn)定吸收塔pH,在保證自然氧化的同時減少對SO2吸收的抑制;減少石灰石用量,減少濕磨機運行時間,節(jié)約成本,緩解因濕磨機故障而產(chǎn)生的石灰石漿液制備壓力大的問題。