激情综合啪啪6月丁香,久久久久国产精品91福利,99精品日韩欧美在线观看,91成人午夜福利在线观看国产

產(chǎn)品|公司|采購(gòu)|招標(biāo)

環(huán)保APP正式上線

HPV莖流量傳感器Sap Flow Sensor澳大利亞

參考價(jià)面議
具體成交價(jià)以合同協(xié)議為準(zhǔn)
  • 公司名稱北京博倫經(jīng)緯科技發(fā)展有限公司
  • 品       牌
  • 型       號(hào)HPV
  • 所  在  地
  • 廠商性質(zhì)其他
  • 更新時(shí)間2023/6/6 21:12:29
  • 訪問次數(shù)340
產(chǎn)品標(biāo)簽:

在線詢價(jià)收藏產(chǎn)品 點(diǎn)擊查看電話

北京博倫經(jīng)緯科技發(fā)展有限公司專業(yè)致力于氣象,農(nóng)業(yè),生態(tài),環(huán)境,土壤,水質(zhì)等方面的測(cè)試儀器的生產(chǎn)和推廣,公司產(chǎn)品廣泛應(yīng)用于教學(xué)科研,農(nóng)業(yè)氣象,水文地質(zhì),風(fēng)景園林監(jiān)管、森林預(yù)警、海洋、軍事、建筑、農(nóng)業(yè)溫室、航天等重多領(lǐng)域,具有性能穩(wěn)定,檢測(cè)精度高,無人值守,抗力強(qiáng)、軟件功能豐富等優(yōu)點(diǎn)被全國(guó)眾多院校廣泛采用,并獲得。同時(shí)公司大量引進(jìn)國(guó)內(nèi)外各種*的在線、離線儀器儀表、機(jī)電礦山設(shè)備、為各行業(yè)用戶提供了大量的產(chǎn)品和服務(wù),尤其在氣象、農(nóng)業(yè)、土壤、農(nóng)林、環(huán)保、機(jī)械、科技教學(xué)國(guó)際貿(mào)易、、系統(tǒng)集成、工程咨詢、維修服務(wù),技術(shù)服務(wù),技術(shù)開發(fā),技術(shù)咨詢等領(lǐng)域。,與世界眾多專業(yè)廠家有密切合作關(guān)系。同時(shí),公司充分利用國(guó)際互聯(lián)網(wǎng)絡(luò)的優(yōu)勢(shì),不僅能為用戶提供泛的產(chǎn)品選擇機(jī)會(huì),獲得的性價(jià)比,還可以為用戶快捷提供科技信息。

     我公司生產(chǎn)的有:自動(dòng)氣象站、農(nóng)業(yè)氣象站、校園氣象站、高速公路氣象站、田間小氣候氣象觀測(cè)站、新能源光伏電力環(huán)境監(jiān)測(cè)系統(tǒng)、太陽能輻射標(biāo)準(zhǔn)監(jiān)測(cè)系統(tǒng)、總輻射傳感器、散輻射傳感器、直接輻射傳感器、反射輻射傳感器、凈輻射傳感器。代理的產(chǎn)品品牌:美國(guó)Davis、荷蘭Kipp&Zonen荷蘭Hukseflux、美國(guó)R.M.young、維薩拉vaisala、美國(guó)RainWise 公司、德國(guó)OTT公司 、德國(guó)LUFFT、等國(guó)際氣象監(jiān)測(cè)儀器。

     北京博倫經(jīng)緯科技發(fā)展有限公司出廠的儀器設(shè)備被越來越多的顧客譽(yù)為最信得的產(chǎn)品。在加強(qiáng)企業(yè)內(nèi)部管理的同時(shí),公司更注重追求全體員工對(duì)產(chǎn)品質(zhì)量的高度重視和對(duì)顧客的真誠(chéng)奉獻(xiàn)。我公司在不斷地開拓市場(chǎng)、質(zhì)量取勝、壯大自身的同時(shí)贏得了業(yè)內(nèi)廣泛贊譽(yù)。
稟承追求質(zhì)量、服務(wù)的一貫宗旨,攜手與您共創(chuàng)輝煌的明天。 

,,,
HPV莖流量傳感器Sap Flow Sensor澳大利亞
HPV莖流量傳感器Sap Flow Sensor澳大利亞 產(chǎn)品信息

HPV 莖流量傳感器/Sap Flow Sensor

c3fee49b128809311ebb1370eb45835.jpg

HPV莖流量傳感器是一款校準(zhǔn)型、低成本的熱脈沖液流傳感器,輸出校準(zhǔn)液流量、熱速、莖水含量、莖溫等數(shù)據(jù),功耗低,內(nèi)置加熱控制,同時(shí)改善了傳統(tǒng)的加熱方式,其原理采用熱脈沖速率法,測(cè)量范圍:-200~+1000cm/hr(熱流速度)或-100~+2000cm3/cm2/hr (莖流通量密度),可廣泛用于于莖流量監(jiān)測(cè)、植物莖流蒸發(fā)計(jì)算、植物莖流蒸騰量、植物灌溉等
植物莖流是樹木內(nèi)部的“水”運(yùn)動(dòng),而蒸騰是從葉片通過光合作用蒸發(fā)流出的水分。樹液流量和蒸騰量之間有很強(qiáng)的關(guān)聯(lián)性,通常理解是同一回事。但是,嚴(yán)格地說,它們是不同的,這體現(xiàn)在它們是如何被測(cè)量的。
SAP流量以L/hr(或每天、每周等)為單位進(jìn)行測(cè)量。蒸騰量以每小時(shí)、每天、每星期等毫米(mm)為單位測(cè)量。
蒸散量=蒸騰量+蒸發(fā)量
蒸騰量以毫米為測(cè)量單位,可與降雨量以毫米計(jì)作比較。隨著時(shí)間的推移,降雨量(水輸入)應(yīng)與蒸騰量(輸出)相匹配。如果蒸騰作用更高,通常是樹木作物的蒸騰作用,那么這種差異必須通過灌溉來彌補(bǔ)。
蒸發(fā)量(evaporation),蒸發(fā)量是指在一定時(shí)段內(nèi),由土壤或水中的水分經(jīng)蒸發(fā)而散布到空中的量。

1mm(降雨量)=1㎡地面1kg水
1mm(蒸騰量)=1㎡葉面積的1升樹液流量(水)

例如:在果園和葡萄園等有管理的樹木作物系統(tǒng)中,蒸發(fā)量與蒸騰量相比非常小。因此,為了簡(jiǎn)化測(cè)量,通常忽略蒸發(fā)量,將蒸騰量取為平均蒸散量(ETo)。

莖流量傳感器廣泛應(yīng)用
計(jì)算總流量
低液流和零液流速率
反向液流速率
夜間水分損失
根莖液流速度
貧瘠生態(tài)系統(tǒng)及干旱
徑向液體流速
葡萄藤的液流

莖流量傳感器技術(shù)指標(biāo)
測(cè)量范圍:-200~+1000cm/hr(熱流速度)
分辨率:0.001cm/hr
準(zhǔn)確度:±0.1cm/hr
探針尺寸:φ1.3mm*L30mm
溫度位置:外10mm,內(nèi)20mm
針距:6mm
探針材質(zhì):316不銹鋼
溫度范圍:-30~+70℃
響應(yīng)時(shí)間:200ms
加熱電阻:39Ω,400J/m
電源:12V DC
電流:空閑5mA, 測(cè)量<270mA
線纜:5m,*大60m



莖流量傳感器參考文獻(xiàn):
1. Kim, H.K.; Park, J.; Hwang, I. Investigating water transport through the xylem network in vascular plants.
J. Exp. Bot. 2014, 65, 1895–1904. [CrossRef] [PubMed]

2. Steppe, K.; Vandegehuchte, M.W.; Tognetti, R.; Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [CrossRef] [PubMed]

3. Vandegehuchte, M.W.; Steppe, K. Sap-flux density measurement methods: Working principles and
applicability. Funct. Plant Biol. 2013, 40, 213–223. [CrossRef]

4. Marshall, D.C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958 , 33, 385–396.
[CrossRef] [PubMed]

5. Cohen, Y.; Fuchs, M.; Green, G.C. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ. 1981, 4, 391–397. [CrossRef]

6. Green, S.R.; Clothier, B.; Jardine, B. Theory and practical application of heat pulse to measure sap flow.
Agron. J. 2003, 95, 1371–1379. [CrossRef]

7. Burgess, S.S.O.; Adams, M.A.; Turner, N.C.; Beverly, C.R.; Ong, C.K.; Khan, A.A.H.; Bleby, T.M. An improved heat-pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001 , 21, 589–598. [CrossRef]

8. Forster, M.A. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 2017 , 8, 350. [CrossRef]

9. Bleby, T.M.; McElrone, A.J.; Burgess, S.S.O. Limitations of the HRM: Great at low flow rates, but no yet up to speed? In Proceedings of the 7th International Workshop on Sap Flow: Book of Abstracts, Seville, Spain, 22–24 October 2008.

10. Pearsall, K.R.; Williams, L.E.; Castorani, S.; Bleby, T.M.; McElrone, A.J. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions. Funct. Plant Biol. 2014, 41, 874–883. [CrossRef]

11. Clearwater, M.J.; Luo, Z.; Mazzeo, M.; Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009 , 32, 1652–1663.[CrossRef]

12. Green, S.R.; Romero, R. Can we improve heat-pulse to measure low and reverse flows? Acta Hortic. 2012 , 951, 19–29. [CrossRef]

13. Green, S.; Clothier, B.; Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 2009, 846, 95–104. [CrossRef]

14. Ferreira, M.I.; Green, S.; Concei??o, N.; Fernández, J. Assessing hydraulic redistribution with the
compensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018 , 425, 21–41.
[CrossRef]

15. Romero, R.; Muriel, J.L.; Garcia, I.; Green, S.R.; Clothier, B.E. Improving heat-pulse methods to extend the measurement range including reverse flows. Acta Hortic. 2012, 951, 31–38. [CrossRef]

16. Testi, L.; Villalobos, F. New approach for measuring low sap velocities in trees. Agric. Meteorol. 2009 , 149, 730–734. [CrossRef]

17. Vandegehuchte, M.W.; Steppe, K. Sapflow+: A four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytol. 2012, 196, 306–317. [CrossRef] [PubMed]

18. Kluitenberg, G.J.; Ham, J.M. Improved theory for calculating sap flow with the heat pulse method.
Agric. For. Meteorol. 2004, 126, 169–173. [CrossRef]

19. Vandegehuchte, M.W.; Steppe, K. Improving sap-flux density measurements by correctly determining
thermal diffusivity, differentiating between bound and unbound water. Tree Physiol. 2012 , 32, 930–942.
[CrossRef]

20. Looker, N.; Martin, J.; Jencso, K.; Hu, J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric. For. Meteorol. 2016, 223, 60–71. [CrossRef]

21. Edwards, W.R.N.; Warwick, N.W.M. Transpiration from a kiwifruit vine as estimated by the heat pulse
technique and the Penman-Monteith equation. N. Z. J. Agric. Res. 1984, 27, 537–543. [CrossRef]

22. Becker, P.; Edwards, W.R.N. Corrected heat capacity of wood for sap flow calculations. Tree Physiol 1999 , 19, 767–768. [CrossRef]

23. Hogg, E.H.; Black, T.A.; den Hartog, G.; Neumann, H.H.; Zimmermann, R.; Hurdle, P.A.; Blanken, P.D.;
Nesic, Z.; Yang, P.C.; Staebler, R.M.; et al. A comparison of sap flow and eddy fluxes of water vapor from a
boreal deciduous forest. J. Geophys. Res. 1997, 102, 28929–28937. [CrossRef]

24. Barkas, W.W. Fibre saturation point of wood. Nature 1935, 135, 545. [CrossRef]

25. Kollmann, F.F.P.; Cote, W.A., Jr. Principles of Wood Science and Technology: Solid Wood; Springer: Berlin Heidelberg, Germany, 1968.

26. Swanson, R.H.; Whitfield, D.W.A. A numerical analysis of heat pulse velocity and theory. J. Exp. Bot. 1981 ,32, 221–239. [CrossRef]

27. Barrett, D.J.; Hatton, T.J.; Ash, J.E.; Ball, M.C. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant Cell Environ. 1995 , 18, 463–469. [CrossRef]

28. Biosecurity Queensland. Environmental Weeds of Australia for Biosecurity Queensland Edition; Queensland Government: Brisbane, Australia, 2016.

29. Steppe, K.; de Pauw, D.J.W.; Doody, T.M.; Teskey, R.O. A comparison of sap flux density using thermal
dissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010 , 150, 1046–1056. [CrossRef]

30. López-Bernal, A.; Testi, L.; Villalobos, F.J. A single-probe heat pulse method for estimating sap velocity in trees. New Phytol. 2017, 216, 321–329. [CrossRef] [PubMed]

31. Forster, M.A. How significant is nocturnal sap flow? Tree Physiol. 2014, 34, 757–765. [CrossRef] [PubMed]

32. Cohen, Y.; Fuchs, M.; Falkenflug, V.; Moreshet, S. Calibrated heat pulse method for determining water uptake in cotton. Agron. J. 1988, 80, 398–402. [CrossRef]

33. Cohen, Y.; Takeuchi, S.; Nozaka, J.; Yano, T. Accuracy of sap flow measurement using heat balance and heat pulse methods. Agron. J. 1993, 85, 1080–1086. [CrossRef]

34. Lassoie, J.P.; Scott, D.R.M.; Fritschen, L.J. Transpiration studies in Douglas-fir using the heat pulse technique. For. Sci. 1977, 23, 377–390.

35. Wang, S.; Fan, J.; Wang, Q. Determining evapotranspiration of a Chinese Willow stand with three-needleheat-pulse probes. Soil Sci. Soc. Am. J. 2015, 79, 1545–1555. [CrossRef]

36. Bleby, T.M.; Burgess, S.S.O.; Adams, M.A. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 2004 , 31, 645–658.[CrossRef]

37. Madurapperuma, W.S.; Bleby, T.M.; Burgess, S.S.O. Evaluation of sap flow methods to determine water use by c*ted palms. Environ. Exp. Bot. 2009, 66, 372–380. [CrossRef]

38. Green, S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigation
scheduling. Acta Hortic. 2008, 792, 321–332. [CrossRef]

39. Intrigliolo, D.S.; Lakso, A.N.; Piccioni, R.M. Grapevine cv. ‘Riesling’ water use in the northeastern United
States. Irrig. Sci. 2009, 27, 253–262. [CrossRef]

40. Eliades, M.; Bruggeman, A.; Djuma, H.; Lubczynski, M. Tree water dynamics in a semi-arid, Pinus brutia
forest. Water 2018, 10, 1039. [CrossRef]

41. Zhao, C.Y.; Si, J.H.; Qi, F.; Yu, T.F.; Li, P.D. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regul. 2017, 82, 353–362. [CrossRef]

42. Deng, Z.; Guan, H.; Hutson, J.; Forster, M.A.; Wang, Y.; Simmons, C.T. A vegetation focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations. Water Resour. Res. 2017, 53, 4965–4983. [CrossRef]

43. Doronila, A.I.; Forster, M.A. Performance measurement via sap flow monitoring of three Eucalyptus species for mine site and dryland salinity phytoremediation. Int. J. Phytoremed. 2015, 17, 101–108. [CrossRef]

44. López-Bernal, á.; Alcántara, E.; Villalobos, F.J. Thermal properties of sapwood fruit trees as affected by
anatomy and water potential: Errors in sap flux density measurements based on heat pulse methods. Trees
2014, 28, 1623–1634. [CrossRef]

產(chǎn)品對(duì)比
QQ

咨詢中心

在線客服QQ交談

市場(chǎng)部QQ交談

發(fā)布詢價(jià)建議反饋
回到頂部

Copyright hbzhan.comAll Rights Reserved

環(huán)保在線 - 環(huán)保行業(yè)“互聯(lián)網(wǎng)+”服務(wù)平臺(tái)

對(duì)比欄

提示

×

*您想獲取產(chǎn)品的資料:

以上可多選,勾選其他,可自行輸入要求

個(gè)人信息:

浮梁县| 通化市| 扶风县| 阜康市| 乳山市| 平湖市| 南乐县| 永仁县| 二连浩特市| 舞钢市| 尼木县| 乐都县| 汝城县| 石首市| 英德市| 宁城县| 通州市| 十堰市| 石柱| 石渠县| 綦江县| 南投县| 湄潭县| 连江县| 贵德县| 阿鲁科尔沁旗| 济南市| 色达县| 华亭县| 漠河县| 昂仁县| 合水县| 绥德县| 九龙县| 铜山县| 白水县| 灵川县| 荔波县| 永安市| 阿克苏市| 信阳市|