石墨烯納米CVD系統(tǒng)
產(chǎn)品簡介:
nanoCVD-8G石墨烯CVD系統(tǒng)是英國MOORFIELD公司與英國曼徹斯特大學(xué)“諾貝爾獎”石墨烯團(tuán)隊共同開發(fā)的一款專門生長高質(zhì)量石墨烯的科研CVD系統(tǒng),該系統(tǒng)采的“冷壁技術(shù)”生長石墨烯,具有生長速度快,石墨烯質(zhì)量高,耗量少,無污染的優(yōu)點(diǎn),有多篇Science 與Nature的文章里都采用了該設(shè)備,是制備高質(zhì)量二維材料石墨烯科研用戶的理想選擇。
產(chǎn)品特性:
? 采用全自動“冷壁”技術(shù)與*的加熱臺設(shè)計實(shí)現(xiàn)高效加熱和低反應(yīng)材料消耗,運(yùn)行費(fèi)用低,石墨烯質(zhì)量高。
? 超緊湊簡約的臺式設(shè)計 ( 外觀體積尺寸: 405X415X280mm3, 機(jī)臺重量 27 公斤)
?裝樣簡單:采用滑竿推拉門與加熱臺聯(lián)動組件
?樣片尺寸:20 mm X40 mm
?加熱單元:低熱載,高加熱率,溫度1100度,熱電偶溫度實(shí)時監(jiān)測溫度
?三路氣體配帶流量控制
?內(nèi)置壓縮氣體風(fēng)扇高效冷卻散熱
?生產(chǎn)時間短:一次完整生長流程時間小于30分鐘
? 觸摸式液晶觸摸屏界面可自設(shè)和存儲多達(dá)30個生長流程,生長條件精確控制,可重復(fù)生成制備石墨烯
? 聯(lián)機(jī)數(shù)據(jù)采集,生長流程全自動控制
? 系統(tǒng)維護(hù)便捷方便,壓力、氣體流量和溫度參數(shù)連鎖確保使用安全
? 基底一般為銅,其它金屬與晶圓可選
實(shí)例:
典型論文:
1, Transparent conductive graphene textile fibers, Neves, A. I. S., et al. Nature Scientific Reports ,2015.
2, Chemical vapor deposited graphene for opto-electronic applications, Passi, V. et al. Journal of Nano Research, 2016.
3, Spectral sensitivity of graphene/silicon heterojunction photodetectors, Riazimehr, S., et al. Solid-State Electronics, 2015.
4, High quality monolayer graphene synthesized by resistive heating cold wall chemical vapor deposition, Bointon, T. H., et al. Advanced Materials, 2015.
5, Versatile polymer-free graphene transfer method and applications, Zhang, G., et al. ACS, Applied Materials and Interfaces ,2007.
6, Selection, characterisation and mapping of complex electrochemical processes at individual single-walled carbon nanotubes: the case of serotonin oxidation, Güell, A. G., et al. Faraday Discussions ,2014.
7, Nanoscale electrocatalysis: Visualizing oxygen reduction at pristine, kinked, and oxidized sites on individual carbon nanotubes, Byers, J. C., et al. Journal of the American Chemical Society ,2014.
8, Mapping nanoscale electrochemistry of individual single-walled carbon nanotubes, Güell, A. G., et al. Nano Letters ,2014.
9, Graphene growth by chemical vapor deposition process on copper foil, Machá?, P., et al. ElectroScope, 2016.
10, Graphene transfer methods for the fabrication of membrane-based NEMS devices, Wagner, S. et al. Microelectronic
Engineering, 2016.
11, Contact resistance study of various metal electrodes with CVD grapheme, Gahoi, A. et al. Solid-State Electronics, 2016.